Saturday, 19 March 2011

Nuclear decay

Eighty elements have at least one stable isotope never observed to decay, amounting to a total of about 255 stable isotopes. However, thousands of isotopes have been characterized that are unstable. These radioisotopes decay over time scales ranging from fractions of a second to weeks, years, or billions of years.

The stability of a nucleus is highest when it falls into a certain range or balance of composition of neutrons and protons; too few or too many neutrons may cause it to decay. For example, in beta decay a nitrogen-16 atom (7 protons, 9 neutrons) is converted to an oxygen-16 atom (8 protons, 8 neutrons) within a few seconds of being created. In this decay a neutron in the nitrogen nucleus is converted into a proton and an electron and an antineutrino by the weak nuclear force. The element is transmuted to another element in by acquiring the created proton.

In alpha decay the radioactive element decays by emitting a helium nucleus (2 protons and 2 neutrons), giving another element, plus helium-4. In many cases this process continues through several steps of this kind, including other types of decays, until a stable element is formed.

In gamma decay, a nucleus decays from an excited state into a lower energy state, by emitting a gamma ray. The element is not changed to another element in the process (no nuclear transmutation is involved).

Other more exotic decays are possible (see the main article). For example, in internal conversion decay, the energy from an excited nucleus may be used to eject one of the inner orbital electrons from the atom, in a process which produces high speed electrons, but is not beta decay, and (unlike beta decay) does not transmute one element to another.

No comments:

Post a Comment