Saturday, 19 March 2011

James Chadwick discovers the neutron

In 1932 Chadwick realized that radiation that had been observed by Walther Bothe, Herbert L. Becker, Irène and Frédéric Joliot-Curie was actually due to a neutral particle of about the same mass as the proton, that he called the neutron (following a suggestion about the need for such a particle, by Rutherford). In the same year Dmitri Ivanenko suggested that neutrons were in fact spin 1/2 particles and that the nucleus contained neutrons to explain the mass not due to protons, and that there were no electrons in the nucleus—only protons and neutrons. The neutron spin immediately solved the problem of the spin of nitrogen-14, as the one unpaired proton and one unpaired neutron in this model, each contribute a spin of 1/2 in the same direction, for a final total spin of 1.

With the discovery of the neutron, scientists at last could calculate what fraction of binding energy each nucleus had, from comparing the nuclear mass with that of the protons and neutrons which composed it. Differences between nuclear masses were calculated in this way and—when nuclear reactions were measured—were found to agree with Einstein's calculation of the equivalence of mass and energy to high accuracy (within 1 percent as of in 1934).
Proca's equations of the massive vector boson field

Alexandru Proca was the first to develop and report the massive vector boson field equations and a theory of the mesonic field of nuclear forces. Proca's equations were known to Wolfgang Pauli[7] who mentioned the equations in his Nobel address, and they were also known to Yukawa, Wentzel,Taketani, Sakata,Kemmer,Heitler and Fröhlich who appreciated the content of Proca's equations for developing a theory of the atomic nuclei in Nuclear Physics

No comments:

Post a Comment