Saturday, 19 March 2011

Nuclear fusion

In nuclear fusion, two low mass nuclei come into very close contact with each other, so that the strong force fuses them. It requires a large amount of energy to overcome the repulsion between the nuclei for the strong or nuclear forces to produce this effect, therefore nuclear fusion can only take place at very high temperatures or high pressures. Once the process succeeds, a very large amount of energy is released and the combined nucleus assumes a lower energy level. The binding energy per nucleon increases with mass number up until nickel-62. Stars like the Sun are powered by the fusion of four protons into a helium nucleus, two positrons, and two neutrinos. The uncontrolled fusion of hydrogen into helium is known as thermonuclear runaway. A frontier in current research at various institutions, for example the Joint European Torus (JET) and ITER, is the development of an economically viable method of using energy from a controlled fusion reaction.

No comments:

Post a Comment